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Abstract
An atomic model in the physical space for an anti-phase boundary (APB) in the
ordered face-centred icosahedral Zn–Mg–Dy quasicrystal phase is presented,
based on a six-dimensional model suggested by Ishimasa and Shimizu (2000
Mater. Sci. Eng. A 294–296 232, Ishimasa 2001 private communication). The
physical space atomic positions of the defected structure were used for the
calculation of the corresponding exit-plane wavefunction and high-resolution
transmission electron microscopy images. The analysis of the defect by inverse
Fourier transformation reveals that when superstructure reflection spots are used
for back-transformation, then at the APB, bright lattice fringes are found to
turn into dark ones, and vice versa. When fundamental reflections are used,
the APB is not visible. This phenomenon is the same as the corresponding
experimental study recently published by Heggen et al (2001a Phys. Rev. B 64
014202). Based on this atomic model it is found that the APB perpendicular
to a fivefold axis A5 (APB-A5) is a non-conservative boundary, while the APB
perpendicular to a pseudo-twofold axis A2P (APB-A2P) is a conservative one.
This fact is consistent with the experimental observation (Heggen et al 2002
J. Alloys Compounds 342 330) that the frequency of occurrence of APB-A5 is
90% in the heat-treated samples compared with that in the deformed samples
(45%), while the frequency of occurrence of APB-A2P is 34% in the deformed
samples compared with that in the heat-treated samples.

1. Introduction

Since the first observation of an icosahedral quasicrystal (IQC) in a Zn–Mg–RE (RE = rare-
earth element) alloy system by Luo et al (1993), and a highly ordered face-centred IQC phase
was reported by Niikura et al (1994a, 1994b) and Tsai et al (1994), this new class of IQCs
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triggered brisk experimental activity mainly for the following two reasons. Firstly, comparing
with the intensively studied Al-based IQCs (e.g., Al–Pd–Mn and Al–Cu–Fe), these novel highly
perfect and thermodynamically stable IQCs have different atomic structures (Yamamoto et al
1996, Ohno and Ishimasa 1998, Ishimasa and Shimizu 2000, Takakura et al 2001) and physical
properties (Fisher et al 1998). Secondly, these IQCs provide the opportunity to investigate
magnetism involving localized 4f moments on RE sites in a quasi-periodic lattice (Charrier et al
1997, Sato et al 1998b, Matsuo et al 2000). This in turn inspired the search for quasicrystals in
Cd-based alloy systems resulting in the discovery of stable icosahedral phases in ternary Cd–
Mg–RE and binary Cd–Yb and Cd–Ca (Guo et al 2000, 2001, Tsai et al 2000, Jiang et al 2001).

Anti-phase boundaries (APBs) can exist in face-centred IQCs due to chemical ordering,
as shown for icosahedral Al–Cu–Fe by Devaud-Rzepski et al (1989) and Ebalard and Spaepen
(1990). Besides that, stacking faults were observed and characterized in different IQCs (Wang
et al 1998, Caillard et al 2000, Heggen et al 2001b). Heggen (2000), Heggen et al (2001a,
2002) observed APBs in plastically deformed as well as in heat-treated and subsequently
quenched Zn–Mg–Dy single IQC samples. In that study, the plane normals of the APBs were
found to be mostly parallel to fivefold (A5) axes for heat-treated and quenched samples and
pseudo-twofold (A2P) directions for deformed material. Recently, a high resolution electron
microscopy (HREM) study of an APB in a fivefold plane in Zn–Mg–Dy IQC was reported by
Heggen et al (2001b). In this study an inverse Fourier transform lattice fringe analysis was
involved to confirm the characteristics of APBs in icosahedral Zn–Mg–Dy. This technique
has been successfully used earlier for the analysis of dislocations in quasicrystals by Devaud-
Rzepski et al (1990) and Yang et al (1998, 2000).

In this paper we calculate the atomic positions of an IQC containing an APB utilizing a
cut and projection method (cf Janot 1992). The six-dimensional (6D) atomic model of the Zn–
Mg–Dy IQC is derived from the model for icosahedral Zn–Mg–Ho proposed by Ishimasa and
Shimizu (2000) and Ishimasa (2001). Based on this atomic model, we calculate the exit-plane
wavefunctions (EPWs) and corresponding HREM images. Finally, we analyse the APB by an
inverse Fourier transform lattice fringe technique.

2. Atomic model of a Zn–Mg–Dy icosahedral quasicrystal containing an APB

2.1. Atomic model of face-centred icosahedral quasicrystal Zn–Mg–Dy

To date, the determination of the structure of icosahedral Zn-based quasicrystals is still an
unresolved problem. However, a number of approximate models have been presented in
recent years (Yamamoto et al 1996, Ohno and Ishimasa 1998, Takakura et al 2001). Ohno and
Ishimasa (1998) proposed a crude 6D atomic structure model for the Zn47Mg45Ho8 IQC phase
by fitting powder x-ray diffraction data, showing that chemical ordering is the origin of the
face-centred symmetry. Investigations revealed the ideal stoichiometry of IQCs to be located
around Zn60Mg30RE10 for RE = Y, Gd, Tb, Dy, Ho and Er (Tsai et al 1997, Langsdorf et al
1997, Sato et al 1998a, Fisher et al 1998, Tsai 1999). Recently, Ishimasa and Shimizu (2000)
presented a modified model giving a correct composition of Zn60Mg30Ho10, a reasonable mass
density and a reduced occurrence of unphysically short atomic distances. However, their model
is far from perfection for some shortcomings, such as the following: (1) Ho should occupy the
centre of the atomic surface rather than the periphery, as argued by Takakura et al (2001); (2)
disorder still exists in some lattice sites; (3) unphysically short atomic distances have not been
completely eliminated.

We adopt this model for the description of icosahedral Zn60Mg30Dy10 simply by replacing
Ho with Dy. The composition of the calculated structure is then close to the composition
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Figure 1. Hyperlattice unit cell for the structure model of face-centred Zn–Mg–Dy IQC. The cell
parameters are given in table 1. T denotes the 6D translation vector, which is used as the shift
vector to produce the APB.

Table 1. Hyperlattice unit-cell parameters for the structure model of the Zn–Mg–Dy IQC. The
short axis of the ellipsoid at the EC node is parallel to the fivefold direction (Ishimasa 2001). The
6D lattice parameter is a0 = 7.3445 Å.

Site Symmetry Multiplicity Element Radius (Å)

Node 1 (0, 0, 0, 0, 0, 0) Yh 1 Zn 7.1
Node 2 (1, 0, 0, 0, 0, 0) Yh 1 Mg 6.5
BC1 1/2(1, 1, 1, 1, 1, 1) Yh 1 Zn 5.5
BC2 1/2(3, 1, 1, 1, 1, 1) Yh 1 Mg, Dy 4.2, 7.7
EC 1/2(1, 0, 0, 0, 0, 0) C5v 12 0.3Mg + 0.7Zn 7.0, 4.9

Zn62.6Mg28.3Dy9.1 of the samples studied by Heggen et al (2001a, 2001b). Figure 1
schematically shows two hyperlattice unit cells and the 3D physical (parallel) space E‖. We
adopt a0 = 7.3445 Å as the 6D primitive lattice parameter (Ohno and Ishimasa 1998). The
6D unit cell is face-centred hypercubic and contains five different types of atomic surface
located at the nodes (node 1 and node 2) and body-centred (BC1 and BC2) and edge-centred
(EC) positions of the primitive hyperlattice. The perpendicular space extensions of the atomic
surfaces are listed in table 1. Note that the atomic surface on the EC position is an ellipsoid,
of which the short axis is oriented parallel to the fivefold direction (Ishimasa 2001).

We used this model to calculate the atomic positions for perfect structure in a 7×7×7 nm3

box in 3D physical space. The box is confined by surfaces perpendicular to the A2P, twofold
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(A2) and A5 axes. These axes were chosen to be parallel to the x , y and z axes, respectively,
of the coordinate system used in the following. The number of atoms in the box amounts
to 18 835, the average chemical composition is Zn61.1Mg29.4Dy9.5 and the density is about
5.7 g cm−3. Both the composition and density agree with experimentally determined values
(Ishimasa and Shimizu 2000). Figures 2(a) and (b) show the projection of atoms in the box
along A5 and A2 axes respectively. In these figures the open, grey, dark grey and full circles
denote Mg, 0.3Mg + 0.7Zn, Zn and Dy atoms respectively. The radii of the plotted discs are
chosen as a function of the z and y coordinates of the atom positions respectively, i.e., atoms
closer to the top are plotted larger.

With the atom positions in the box, we calculated the corresponding EPW and HREM
images employing the multi-slice technique and the EMS program package developed by
Stadelmann (1987). Figures 2(c) and (d) show the corresponding EPW intensity patterns and
figures 2(e) and (f) the simulated HREM images, using an accelerating voltage of 400 kV
at approximate defocus values of � f = −60 nm and a spherical aberration coefficient
Cs = 1.0 mm. We can see the close correspondence between the projections of atom
positions, EPW intensity patterns and simulated HREM images. Figure 2(e) shows the same
characteristics as an experimental HREM image along an A5 direction (figure 6 in Fisher et al
1998), which indicates the reasonableness of the atomic model used here to some extent. The
EPW shows the characteristics of the studied structure, irrespective of the various transmission
electron microscope parameters. Hence we will use the EPW intensity patterns rather than
HREM images in the following analysis.

2.2. The shift vector along the APB

In order to compare with the primitive IQC we utilize the same coordinate system for both
IQCs. In this case, the 6D lattice points for the primitive IQC should be divided into two types:
even nodes with the summation of their six indices equal to an even integer; and odd nodes
with the summation an odd integer. For example, nodes [0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 2], [2,
0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2] and [1, 1, 1, 1, 1, 1] in figure 1 are even nodes, and nodes [0, 1,
1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 2, 2, 2, 2, 2] and [2, 1, 1, 1, 1, 1] in figure 1 are odd nodes.
A unit cell of a face-centred IQC consists of two primitive unit cells, represented by one even
node and its neighbour odd node. Similarly, the 6D reciprocal lattice vectors for a face-centred
IQC should be divided into two types: fundamental ones with their indices all integers, which
are common for both primitive and face-centred IQCs, and superlattice reciprocal vectors with
their indices all half odd-integers, which are specific to face-centred IQCs.

In their experimental study on planar defects, by using diffraction contrast imaging
technique, Heggen et al (2001a) found that the planar defects investigated are visible in
diffraction contrast images if a superlattice reflection GS is activated for diffraction contrast
imaging, whereas no contrast is observed if any fundamental reflection GF is used. This fact
reveals that any lattice vector T of odd nodes, e.g., T = [1, 0, 0, 0, 0, 0], may be selected as
the shift vector of the APB, because GS · T is equal to a half integer which corresponds to a
phase change of π . This fact is the origin of the name ‘anti-phase boundary’ for this planar
defect. From figure 1, it is obvious that the 6D translation vector T = [1, 0, 0, 0, 0, 0], which
is parallel to [1/0, 0/1, 0/0] in physical space, is not a symmetry operation of the face-centred
IQC lattice and hence can be chosen as an APB fault vector. The APB is then introduced
into the structure according to the geometry shown in figure 3(b) by giving the atoms in the
right-hand side of the box a translation of T = [1, 0, 0, 0, 0, 0] in 6D space.
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Figure 2. Perfect structure of face-centred Zn–Mg–Dy IQC according to the structure model
defined in table 1 and figure 1. Physical-space atomic positions projected along (a) A5 and (b)
A2 directions. The open, grey, dark grey and full circles denote Mg, 0.3Mg + 0.7Zn, Zn and
Dy atoms respectively. Corresponding EPW intensity patterns (c) and (d), and simulated HREM
images (e) and (f).

2.3. Atomic model of face-centred Zn–Mg–Dy IQC containing an APB

According to the experimental findings of Heggen et al (2001a, 2002), the APB normal is
chosen along a fivefold direction. Cahn et al (1986) showed that superstructure reflections
due to face-centred ordering can be visible in twofold diffraction patterns. Hence we choose
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Figure 3. (a) Physical-space atomic positions projected along the y (A2) axis of the structure which
contains an APB perpendicular to the z (A5) axis. (b) Geometry of the defected structure containing
the APB. (c) EPW intensity pattern corresponding to (a). (d) Fourier transform of (c). The marked
spots correspond to the reflections used for inverse transformation. Labelling (table 2): along A2
g21, g22, . . . , g24, along A3 g31, g32, . . . , g36 and along A5 g51, g52, . . . , g57 sequentially from the
centre.

a viewing direction (i.e. the direction of incident electron beam in the HREM simulations)
parallel to an A2 axis.

The atom positions in physical space (figure 3(a)) are calculated via a cut-and-projection
formalism (Janot 1992) after introduction of the APB. The number of atoms in the box
containing the fault amounts to 18 842, the composition is Zn61.2Mg29.3Dy9.5 and the density
is 5.7 g cm−3. In these properties, the structure containing the APB is thus very close to the
ideal structure. Minor differences occur due to the boundary effects. The corresponding EPW
intensity pattern shown in figure 3(c) is calculated with the EMS program package using the
same parameters as those for the perfect one (figure 2(d)).

Figure 3(d) shows the central part of the numerical Fourier transform of the EPW intensity
pattern in figure 3(c). Circles mark those spots which have been used for the inverse Fourier
transformations shown in figure 4. Their indices are listed in table 2.

Figure 4 shows lattice fringe images obtained by inverse Fourier transformation of
figure 3(d). When superstructure reflection spots are used for back-transformation (g31, g54, g56

for figures 4(b), (d) and (f)), the APB is visible. When crossing the APB, bright lattice fringes
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Figure 4. Fringe patterns obtained by inverse Fourier transformation using the reflections (a) g22,
(b) g31, (c) g33, (d) g54, (e) g55 and (f) g56. (See table 2.)

are found to turn into dark ones, and vice versa. When fundamental reflections are used for
back-transformation (g22, g33, g55 for figures 4(a), (c) and (e)), the APB is not visible. The
complete results of this analysis are listed in table 2.

We have additionally performed the simulation of an APB perpendicular to an A2P axis
(x axis in figure 3(b)). This APB orientation has frequently been observed in experimental
studies in deformed samples (Heggen et al 2000b, 2001a, 2002). For such an oriented APB,
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Table 2. Results of the lattice-fringe analysis of the APB. g denotes all diffraction vectors used and
their physical space (h/h′, k/k ′, l/ l′ ) and 6D indices (n1, n2, n3, n4, n5, n6) according to Cahn
et al (1986). F, fundamental reflection; S, superstructure reflection.

Fundamental or
superstructure Shift of fringes at APB

Label (h/h′, k/k ′, l/ l′ ) (n1, n2, n3, n4, n5, n6) reflection (F/S) Yes or no (Y/N)

g21 (2/4, 0/0, 0/0) (1, 2, 0,−1, 2, 0) F N
g22 (4/6, 0/0, 0/0) (2, 3, 0,−2, 3, 0) F N, figure 4(a)
g23 (4/8, 0/0, 0/0) (2, 4, 0,−2, 4, 0) F N
g24 (6/10, 0/0, 0/0) (3, 5, 0, −3, 5, 0) F N
g31 (2/3, 1/1, 0/0) 1/2(3, 3, 1,−1, 3,−1) S Y, figure 4(b)
g32 (3/5, 1/2, 0/0) 1/2(5, 5, 1,−1, 5,−1) S Y
g33 (4/6, 2/2, 0/0) (3, 3, 1, −1, 3,−1) F N, figure 4(c)
g34 (5/7, 2/3, 0/0) 1/2(7, 7, 3,−3, 7,−3) S Y
g35 (5/8, 2/3, 0/0) (4, 4, 1,−1, 4,−1) F N
g36 (8/13, 3/5, 0/0) 1/2(13, 13, 3,−3, 13,−3) S Y
g51 (0/1, 1/1, 0/0) 1/2(1, 1, 1, 1, 1,−1) S Y
g52 (1/1, 1/2, 0/0) 1/2(3, 1, 1, 1, 1,−1) S Y
g53 (1/2, 2/3, 0/0) (2, 1, 1, 1, 1,−1) F N
g54 (2/3, 3/5, 0/0) 1/2(7, 3, 3, 3, 3,−3) S Y, figure 4(d)
g55 (2/4, 4/6, 0/0) (4, 2, 2, 2, 2,−2) F N, figure 4(e)
g56 (3/5, 5/8, 0/0) 1/2(11, 5, 5, 5, 5,−5) S Y, figure 4(f)
g57 (5/8, 8/13, 0/0) (9, 4, 4, 4, 4, −4) F N

we found similar results as listed in table 2. Namely, the APB is visible in lattice-fringe images
if superlattice reflections are used for inverse Fourier transformation, while the lattice fringes
are undistorted if fundamental reflections are used.

Figure 5 shows the statistics about changes of the atom distribution caused by an APB
which lies at the position z = 35 Å and is perpendicular to the A5 axis. Circles and triangles
represent respectively the atoms in the perfect and APB-defected IQCs. These statistics reveal
the following.

(1) The APB does not affect the distribution of the 0.3Mg + 0.7Zn atoms. This fact is easily
understood if we notice that the 12 EC positions are the same for both even and odd nodes
in the 6D atomic model (figure 1).

(2) Zn atoms are pushed away from the APB and Mg and Dy atoms are pulled to the APB.

For example, when starting from the APB, the first two layers of Zn atoms lying at the positions
of z = 35.596 and 36.483 Å in the perfect face-centred IQC are shifted to the positions of
z = 37.031 and 37.918 Å in the APB-containing face-centred IQC by an amount of 1.435 Å.
At the same time, the Mg atoms lying at the positions of z = 37.031 and 37.918 Å are pushed
to the positions of z = 35.596 and 36.483 Å. The Dy atoms at the position of z = 37.918 Å
are pushed to the position of z = 35.596 Å.

Similar statistics were carried out for the APB lying at the position of x = 35 Å and
perpendicular to the A2P axis as shown in figure 6. Surprisingly there is only very little
change of the atomic distribution for all types of atom except some shifts in the planes which
are parallel to the APB plane.

These statistics tell us that the APB perpendicular to an A5 axis is non-conservative, while
the APB perpendicular to an A2P axis is nearly conservative.
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(a)

(b)

(c)

(d)

Figure 5. Statistical changes of the atom distribution caused by an APB which lies at the position
z = 35 Å and is perpendicular to the A5 axis. Circles and triangles represent respectively the
atoms in the perfect and APB-defected IQCs. (a) Zn atoms; (b) Mg atoms; (c) Dy atoms; (d)
0.3Mg + 0.7Zn atoms.
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(a)

(b)

(c)

(d)

Figure 6. Statistical changes of the atom distribution caused by an APB which lies at the position
x = 35 Å and is perpendicular to the A2P axis. Circles and triangles represent respectively the
atoms in the perfect and APB-defected IQCs. (a) Zn atoms; (b) Mg atoms; (c) Dy atoms; (d)
0.3Mg + 0.7Zn atoms.
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3. Discussion

In this paper we present the simulation of an APB on the basis of an atomic model of the face-
centred Zn–Mg–Dy IQC. The APB was introduced by a shift vector in the 6D hyperlattice and
the atomic positions of the physical-space structure containing the defect were obtained by
subsequent application of a cut-and-projection formalism. Calculated EPWs of the defected
structure were characterized using an inverse Fourier transform lattice-fringe technique. This
allows a direct comparison with a corresponding experimental study recently published by
Heggen et al (2001b). In that study, the authors found that the planar defects are visible in
lattice-fringe images if superlattice reflections are used for inverse Fourier transformation,
whereas the lattice fringes of fundamental reflections are undistorted. The same results are
obtained in the present study, indicating that our approach for the construction of the APB
gives useful results.

An APB with a shift vector of T = [1, 0, 0, 0, 0, 0] ending in the interior of a grain has
to be bounded by a partial dislocation with a Burgers vector of BP = [1, 0, 0, 0, 0, 0] which
is parallel to [1/0, 0/1, 0/0] in physical space. Even in face-centred cubic crystals, it is very
difficult to identify the Burgers vector of a partial dislocation, because the extinction condition
is not simply g ·bP = 0 (Hirsch et al 1965). Moreover, a partial dislocation of a Burgers vector
BP = [1, 0, 0, 0, 0, 0] may be decomposed further, forming a stacking fault in between as
Heggen (2000, figure 4.17) observed. All these facts complicate the experimental examination
of the partial dislocations bounding the APB in the face-centred IQC.

Heggen et al (2001a) observed experimentally that crossing of two APBs leads to their
annihilation at their intersection line and illustrated this phenomenon schematically by a two-
dimensional ordered crystal. In fact, this phenomenon can be interpreted easily by the 6D
atomic model of APB utilized in the present paper. Notice that the difference between
the face-centred and simple lattices lies in the fact that for a simple lattice all the vectors
[n1, n2, n3, n4, n5, n6] with integer indices nk are lattice vectors, while for a face-centred
lattice only those with even sums of the indices (

∑
nk = even) are lattice vectors, and the

vectors with odd sum indices are translation vectors between two anti-phase domains. By the
language of group theory, this is to say that the index of the subgroup H pertaining to the
face-centred lattice is 2 compared with its supergroup G pertaining to the simple lattice. The
corresponding decomposition is as follows:

G = H + T H,

with

G = {[n1, n2, n3, n4, n5, n6]|nk ⊂ Z},
H =

{
[n1, n2, n3, n4, n5, n6]|nk ⊂ Z and

∑
nk = even

}
,

T = [1, 0, 0, 0, 0, 0],

where Z denotes the integer group. According to this atomic model, there are only two
types of anti-phase domain with a translation vector of T = [1, 0, 0, 0, 0, 0] in between.
Other translation vectors are all equivalent to this. For example, T ′ = [0, 1, 1, 1, 1, 1] =
[1, 0, 0, 0, 0, 0] + [−1, 1, 1, 1, 1, 1]. Hence, crossing of two APBs leads to their annihilation
at their intersection line.

As shown in figures 3(d) and 4, the intensity of superstructure reflection spots and the
contrast of the corresponding inverse Fourier transformed images are very weak compared
with the experimental observations (Heggen et al 2001b). We have noted that, using the model
by Ishimasa and Shimizu (2000), Ishimasa (2001), about 70% of the physical-space atomic
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positions obtained are 0.3Mg + 0.7Zn from the EC sites in the 6D lattice. These, however, do
not contribute to the intensity of superstructure reflection spots and therewith to the APB. This
fact indicates an insufficient ordering in the model proposed by Ishimasa and Shimizu (2000),
Ishimasa (2001).

A surprising conclusion obtained from the statistics about changes of the atom distribution
caused by an APB reveal that the APB perpendicular to an A5 axis (APB-A5) is non-
conservative, while the APB perpendicular to an A2P axis (APB-A2P) is nearly conservative.
It is well known that the formation of a non-conservative APB needs diffusion. This fact is
consistent with the recent experimental observation (Heggen et al 2002) that the frequency of
occurrence of APB-A5 is 90% in the heat-treated samples compared with that in the deformed
samples (45%), while the frequency of occurrence of APB-A2P is 34% in the deformed samples
compared with that in the heat-treated samples.
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